Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Sci Rep ; 13(1): 21436, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052807

RESUMEN

Vascular endothelial growth factor (VEGF)-A induces endothelial hyperpermeability, but the molecular pathways remain incompletely understood. Endothelial nitric oxide synthase (eNOS) regulates acute effects of VEGF-A on permeability of endothelial cells (ECs), but it remains unknown whether and how eNOS regulates late effects of VEGF-A-induced hyperpermeability. Here we show that VEGF-A induces hyperpermeability via eNOS-dependent and eNOS-independent mechanisms at 2 days after VEGF-A stimulation. Silencing of expression of the eNOS gene (NOS3) reduced VEGF-A-induced permeability for dextran (70 kDa) and 766 Da-tracer in human dermal microvascular ECs (HDMVECs), but not in human retinal microvascular ECs (HRECs) and human umbilical vein ECs (HUVECs). However, silencing of NOS3 expression in HRECs increased permeability to dextran, BSA and 766 Da-tracer in the absence of VEGF-A stimulation, suggesting a barrier-protective function of eNOS. We also investigated how silencing of NOS3 expression regulates the expression of permeability-related transcripts, and found that NOS3 silencing downregulates the expression of PLVAP, a molecule associated with trans-endothelial transport via caveolae, in HDMVECs and HUVECs, but not in HRECs. Our findings underscore the complexity of VEGF-A-induced permeability pathways in ECs and the role of eNOS therein, and demonstrate that different pathways are activated depending on the EC phenotype.


Asunto(s)
Óxido Nítrico Sintasa de Tipo III , Factor A de Crecimiento Endotelial Vascular , Humanos , Caveolas/metabolismo , Células Cultivadas , Dextranos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/farmacología
2.
J Pers Med ; 11(12)2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34945769

RESUMEN

BACKGROUND: The aim of this study was to investigate whether miRNA levels in the circulation could serve as a predictive biomarker for responsiveness to anti-vascular endothelial growth factor (VEGF) therapy in patients with diabetic macular edema. METHODS: Whole blood samples were collected at baseline from 135 patients who were included in the BRDME study, a randomized controlled comparative trial of monthly bevacizumab or ranibizumab treatment for 6 months in patients with diabetic macular edema (Trialregister.nl, NTR3247). Best corrected visual acuity letter score (BCVA) and retinal central area thickness (CAT) were measured monthly during the 6-month follow-up. Levels of selected miRNAs were quantified. RESULTS: Following linear regression analysis, the levels of four miRNAs were negatively associated with baseline CAT. Multivariable regression analysis confirmed this association for miR-181a. No associations with changes in CAT after 3 or 6 months of anti-VEGF treatment were found. In addition, no associations with miRNA levels with baseline BCVA or change in BCVA after 3 or 6 months of anti-VEGF treatment were found. CONCLUSIONS: Circulating miR-181a levels were negatively associated with CAT at baseline. However, no associations between miRNA levels and the response to anti-VEGF therapy were found.

3.
Cells ; 10(4)2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923753

RESUMEN

During angiogenesis, vascular endothelial growth factor A (VEGFA) regulates endothelial cell (EC) survival, tip cell formation, and stalk cell proliferation via VEGF receptor 2 (VEGFR2). VEGFR2 can interact with VEGFR2 co-receptors such as heparan sulfate proteoglycans (HSPGs) and neuropilin 2 (NRP2), but the exact roles of these co-receptors, or of sulfatase 2 (SULF2), an enzyme that removes sulfate groups from HSPGs and inhibits HSPG-mediated uptake of very low density lipoprotein (VLDL), in angiogenesis and tip cell biology are unknown. In the present study, we investigated whether the modulation of binding of VEGFA to VEGFR2 by knockdown of SULF2 or NRP2 affects sprouting angiogenesis, tip cell formation, proliferation of non-tip cells, and EC survival, or uptake of VLDL. To this end, we employed VEGFA splice variant 121, which lacks an HSPG binding domain, and VEGFA splice variant 165, which does have this domain, in in vitro models of angiogenic tip cells and vascular sprouting. We conclude that VEGFA165 and VEGFA121 have similar inducing effects on tip cells and sprouting in vitro, and that the binding of VEGFA165 to HSPGs in the extracellular matrix does not seem to play a role, as knockdown of SULF2 did not alter these effects. Co-binding of NRP2 appears to regulate VEGFA-VEGFR2-induced sprout initiation, but not tip cell formation. Finally, as the addition of VLDL increased sprout formation but not tip cell formation, and as VLDL uptake was limited to non-tip cells, our findings suggest that VLDL plays a role in sprout formation by providing biomass for stalk cell proliferation.


Asunto(s)
Heparitina Sulfato/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica , Neuropilina-2/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Apoptosis , Humanos , Lipoproteínas VLDL/metabolismo , Sulfatasas/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
4.
Mol Biol Rep ; 47(4): 2561-2572, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32133604

RESUMEN

PURPOSE: We have previously identified insulin-like growth factor 2 (IGF2) and insulin-like growth factor 1 receptor (IGF1R) as essential proteins for tip cell maintenance and sprouting angiogenesis. In this study, we aim to identify other IGF family members involved in endothelial sprouting angiogenesis. METHODS: Effects on sprouting were analyzed in human umbilical vein endothelial cells (HUVECs) using the spheroid-based sprouting model, and were quantified as mean number of sprouts per spheroid and average sprout length. RNA silencing technology was used to knockdown gene expression. Recombinant forms of the ligands (IGF1 and IGF2, insulin) and the IGF-binding proteins (IGFBP) 3 and 4 were used to induce excess effects. Effects on the tip cell phenotype were analyzed by measuring the fraction of CD34+ tip cells using flow cytometry and immunohistochemistry in a 3D angiogenesis model. Experiments were performed in the presence and absence of serum. RESULTS: Knockdown of IGF2 inhibited sprouting in HUVECs, in particular when cultured in the absence of serum, suggesting that components in serum influence the signaling of IGF2 in angiogenesis in vitro. We then determined the effects of IGFBP3 and IGFBP4, which are both present in serum, on IGF2-IGF1R signaling in sprouting angiogenesis in the absence of serum: knockdown of IGFBP3 significantly reduced sprouting angiogenesis, whereas knockdown of IGFBP4 resulted in increased sprouting angiogenesis in both flow cytometry analysis and immunohistochemical analysis of the 3D angiogenesis model. Other IGF family members except INSR did not affect IGF2-IGF1R signaling. CONCLUSIONS: Serum components and IGF binding proteins regulate IGF2 effects on sprouting angiogenesis. Whereas IGFBP3 acts as co-factor for IGF2-IGF1R binding, IGFBP4 inhibits IGF2 signaling.


Asunto(s)
Inductores de la Angiogénesis/metabolismo , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína 4 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Células Endoteliales de la Vena Umbilical Humana , Humanos , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/fisiología , Proteína 4 de Unión a Factor de Crecimiento Similar a la Insulina/fisiología , Factor I del Crecimiento Similar a la Insulina , Factor II del Crecimiento Similar a la Insulina , Morfogénesis , Neovascularización Patológica/metabolismo , Organoides/metabolismo , Receptor IGF Tipo 1 , Receptor IGF Tipo 2 , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...